journal article

Phytoplankton adaptation to steady or changing environments affects marine ecosystem functioning

Abstract

Global warming poses a major threat to marine ecosystems, which fulfill important functions for humans and the climate. Ecosystem models are therefore increasingly used to estimate future changes in the functioning of marine ecosystems. However, projections differ notably between models. We propose that a major uncertainty factor in current models is that they ignore the high adaptive potential of phytoplankton, key players in marine ecosystems. Here, we use a zero-dimensional evolutionary ecosystem model to study how phytoplankton adaptation can affect estimates of future ecosystem-level changes. We found that phytoplankton adaptation can notably change simulated ecosystem dynamics, with the effect depending on environmental conditions. In a steady environment, adaptation allows for a more efficient use of resources, which enhances primary production and related ecosystem functions. In a warming environment, on the contrary, adaptation mitigates dominance changes among functionally different taxa and consequently leads to weaker changes in related ecosystem functions. Our results demonstrate that by neglecting phytoplankton adaptation, models may systematically overestimate future changes in the functioning of marine ecosystems. Future work can build on our results and include evolutionary processes into more complex model environments.
QR Code: Link to publication