Abstract
This study aims to achieve a synergy of strength and ductility in magnesium-based nanocomposite materials through the design of a dual-heterostructure. Utilizing ball milling and hot extrusion, a nano-TiC/AZ61 composite featuring particle-rare coarse grain (CG) and particle-rich fine grain (FG) zones was successfully fabricated. Experimental results demonstrated that compared with the homogeneous structure, the dual-heterostructure composite achieved a significant increase in elongation by 116% and a remarkable 165% improvement in the strength-ductility product (SDP), while maintaining a high ultimate tensile strength (UTS) of 417±4 MPa. This substantial performance enhancement is primarily attributed to the additional strain hardening induced by hetero-deformation-induced (HDI) strain hardening and crack-blunting capabilities, as elucidated by microstructural characterization and crystal plasticity finite element modeling (CPFEM). Notably, the strain hardening contribution from the CG zones at the early stage of deformation (≤ 45% of total plastic deformation amount) is minimal but increases significantly during the subsequent deformation stages. The dislocation increment rate in CG zones (219%) is observed to be more than double that in FG zones (95%), attributed to the large grain size and low dislocation density in CG zones, which provide more space for dislocation storage. In addition, the aggravated deformation inhomogeneity as deformation progresses leads to an increase in geometrically necessary dislocations (GNDs) generation near the heterogeneous interface, thereby enhancing HDI hardening. Fracture mechanism analysis indicated that the cracks mainly initiate in the FG region and are effectively blunted upon their propagation to the CG region, necessitating increased energy consumption and indicating higher fracture toughness for the dual-heterostructure composites. This study validates the effectiveness of the dual-heterostructure design in magnesium-based composites, providing a novel understanding of the deformation mechanism through both experimental analysis and CPFEM, paving the way for the development of high-performance, lightweight structural materials.