journal article

Seasonality, rather than estuarine gradient or particle suspension/sinking dynamics, determines estuarine carbon distributions

Abstract

The lack of clear salinity driven patterns in our study are presumably due to strong mixing forces and high particle heterogeneity along the estuary, with only density differences between suspended and sinking particles. Elbe estuary particles' organic portion is made up of marine-like (sinking) and terrestrial-like (suspended) signatures. Salinity did not have a significant role in microbial degradation and carbon composition, although brackish estuary portions were more biologically active. Indicative of increased degradation rates, leading to decreased greenhouse gas emissions, which are especially relevant for estuaries, with their disproportionate greenhouse gas emissions. Bacterial colonisation decreased seawards, indicative of decreased degradation, and shifts in microbial community composition and functions. Our findings span diverse strands of research, concerning steady carbon contributions from both marine and terrestrial sources, carbon aromaticity, humification index, and bioavailability. Their integration highlights the importance of the Elbe estuary as a model system, providing robust information for future policy decisions affecting dissolved and particulate matter dynamics within the Elbe Estuary.
QR Code: Link to publication