Publication

Deep Rolling for Tailoring Residual Stresses of AA2024 Sheet Metals

Abstract

Deep Rolling as a well-known mechanical surface treatment process is investigated with the objective to tailor residual stress profiles over the sheet metal thickness. Experiments are performed in a milling portal on AA2024 aluminum alloy with a hydrostatically mounted deep rolling tool. Residual stress measurements are carried out using the hole drilling method. A numerical simulation using the finite element method (FEM) is set up and experimentally validated. One of the most effective parameters to tailor residual stresses is the deep rolling force, which is directly linked to the hydraulic tool pressure. The residual stress profiles can be described by characteristic values such as the magnitude of the maximum compressive residual stress and its penetration depth. Deep rolling modifies residual stresses not only along the material depth but also along other spatial directions.