Abstract
We present an efficient solver for the simulation of many-particle solid-state-sintering processes. The microstructure evolution is described by a system of equations consisting of one Cahn–Hilliard equation and a set of Allen-Cahn equations to distinguish neighboring particles. The particle packing is discretized in space via multicomponent linear adaptive finite elements and implicitly in time with variable time-step sizes, resulting in a large nonlinear system of equations with strong coupling between all components to be solved. Since on average 10k degrees of freedom per particle are necessary to accurately capture the interface dynamics in 3D, we propose strategies to solve the resulting large and challenging systems. This includes the efficient evaluation of the Jacobian matrix as well as the implementation of Jacobian-free methods by applying state-of-the-art matrix-free algorithms for high and dynamic numbers of components, advances regarding preconditioning, and a fully distributed grain-tracking algorithm. We validate the obtained results, examine in detail the node-level performance and demonstrate the scalability up to 10k particles on modern supercomputers. Such numbers of particles are sufficient to simulate the sintering process in (statistically meaningful) representative volume elements. Our framework thus forms a valuable tool for the virtual design of solid-state-sintering processes for pure metals and their alloys.