Abstract
A parametric study was carried out on the direct extrusion of magnesium flat products made of AZ31 and ZN10, in which the extrusion speed and the die geometry were varied. This leads to a change in recrystallization behavior (process temperature), material flow and strain path. The resulted microstructure and texture development were investigated using EBSD measurements. Additionally, a finite element model for AZ31 was developed based on the parametric study and later used helping to understand the material flow and strain path during the extrusion. The obtained knowledge is essential to optimize the die geometry and process parameters and allows a more controlled development of microstructure and texture during extrusion of magnesium.