journal article

High-Temperature CoNi-Based Superalloys Strengthened by γ′-(Ni,Co)3(Cr,Al,Ti,X): The Effect of Refractory Elements

Abstract

Recent research on Co-based and CoNi-based alloys revealed that the Co–Al–W-system provides interesting properties, however, the high content of W addition triggers high mass density of alloys which limits its industrial application. Therefore, new high temperature superalloys based on the Co–Ni–Al–Ti-system with high content Cr and strengthened by γ′-(Ni,Co)3(Cr,Al,Ti) precipitates, have been developed, and the effect of different refractory element additions was investigated. STEM-EDS and HEXRD were employed to determine the elemental partitioning behavior and the lattice misfit between the γ and γ′ phases. Ta and Nb strongly concentrate within the γ′ phase, whereas Mo weakly partitions to the γ phase. W distributes equally between the γ and γ′ phases. These new superalloys have an unexpectedly high positive misfit compared with some conventional Ni-based superalloys and Co-based superalloys. Nb and Ta additions increase the lattice misfit further, while Mo and W decrease the lattice misfit. The effect of refractory elements alloying on the yield stress at room temperature was evaluated by analyzing the contributions of different strengthening mechanisms. Alloying with Nb or Ta significantly improves precipitation strengthening by increasing the antiphase boundary energy. Mo has the highest solid solution strengthening effect in the γ phase, followed by W. Compared with some conventional Ni-based superalloys, the investigated new CoNi-based superalloys exhibited better mechanical properties at high temperature, which indicates that these compositionally complex alloys are possible candidates for high temperature applications.
QR Code: Link to publication