journal article

In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625: microstructure evolution during heat treatments

Abstract

The study reports that the combined use of in situ interlayer hot forging and post-deposition heat treatment (PDHT) could alter the typical coarse and oriented microstructure of the Ni-based superalloy 625 obtained by arc plasma directed energy deposition (DED) to a fine and non-oriented condition. In situ synchrotron X-ray diffraction and electron backscatter diffraction showed that the high-temperature (1100 °C/ 1 h) PDHT induced significant recrystallization, leading to grain refinement and low texture index, while partially dissolving deleterious Laves and δ phases. Low-temperature (980 °C/ 1 h) PDHT had a limited effect on the grain size refinement and induced the formation of secondary phases. It is shown that conventional heat treatments applied to Ni-based superalloy 625 obtained by arc plasma DED are not conducive to optimized microstructure features. In situ hot forging induced enough crystal defects to promote static recrystallization during PDHT. Besides, high-temperature PDHT met the AMS 5662 grain size requirements.
QR Code: Link to publication