Abstract
A newly developed in-situ-hybridization single-step process for the manufacturing of formed fiber-metal-laminates (FML) was introduced in previous works. During the deep drawing process, the fabric layer is infiltrated with a low-viscous thermoplastic matrix in a resin transfer molding process. The matrix polymerizes after the forming is completed. First parts could be manufactured successfully, but the influence of many process parameters continues to be unknown. The interaction of fiber and metal layer (DC04) on the formability of the FML is experimentally investigated by the deep drawing of FML parts without matrix injection. Parameters tested were the blank holding force, tool lubrication as well as different surface treatments of the metal sheet. Fiber breakage was observed after deep drawing of the dry FML. The deep drawn metal sheets were analyzed by surface strain measurements. The formability was then assessed by comparing the measured surface strains to a forming limit curve obtained by Nakajima-tests of the metal-fiber-metal stack. The results of the parameter investigation during dry deep drawing are analyzed to understand the influence of the process parameters on the in-situ hybridization process containing matrix injection.