Abstract
Aqueous solutions of polyethylene glycol are studied by small-angle neutron scattering over a broad range of polymer molecular masses and concentrations. The scattering data were modeled by a Gaussian chain form factor combined with random phase approximation, which provided good fits over the whole studied concentration range. The results showed that polyethylene glycol in the molecular mass range 0.4–20 kDa in water at physiological temperature T = 37 ∘C behaves like a random coil in nearly theta solvent conditions. The obtained results serve as a reference for the description of complex mixtures with PEG used in various applications.