Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer


Heparin was grafted onto polycarbonate urethane (PCU) surface via a three-step procedure utilizing, αω-diamino-poly(ethylene glycol) (APEG, M n=2 000) as a spacer. In the first step, isocyanate functional groups were introduced onto PCU surface by the treatment of hexamethylene diisocyanate (HDI) in the presence of di-n-butyltin dilaurate (DBTDL) as a catalyst. In the second step, APEG was linked to the PCU surface to obtain the APEG conjugated PCU surface (PCU-APEG). In the third step, heparin was covalently coupled with PCU-APEG in the presence of N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylamidopropyl) carbodiimide (EDAC). The amount of heparin (1.639 μg/cm2) covalently immobilized on the PCU-APEG surface was determined by the toluidine blue method. The modified surface was characterized by water contact angle, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The hemocompatibility was preliminarily studied by platelet adhesion test. The results indicated that heparin was successfully grafted onto the PCU surface, and meanwhile the hydrophilicity and hemocompatibility of the modified PCU surface were improved significantly compared with the blank PCU surface.
QR Code: Link to publication