Journalpaper

Internal Bore Evolution across the Shelf near Pt. Sal, California, Interpreted as a Gravity Current

Abstract

Off the central California coast near Pt. Sal, a large-amplitude internal bore was observed for 20 h over 10 km cross shore, or 100–10-m water depth (D), and 30 km along coast by remote sensing, 39 in situ moorings, ship surveys, and drifters. The bore is associated with steep isotherm displacements representing a significant fraction of D. Observations were used to estimate bore arrival time tB, thickness h, and bore and nonbore (ambient) temperature difference ΔT, leading to reduced gravity g′. Bore speeds c, estimated from mapped tB, varied from 0.25 to 0.1 m s−1 from D = 50 to 10 m. The h varied from 5 to 35 m, generally decreased with D, and varied regionally along isobath. The bore ΔT varied from 0.75° to 2.15°C. Bore evolution was interpreted from the perspective of a two-layer gravity current. Gravity current speeds U, estimated from the local bore h and g′, compared well to observed bore speeds throughout its cross-shore propagation. Linear internal wave speeds based on various stratification estimates result in larger errors. On average bore thickness h = D/2, with regional variation, suggesting energy saturation. From 50- to 10-m depths, observed bore speeds compared well to saturated gravity current speeds and energetics that depend only on water depth and shelf-wide mean g′. This suggests that this internal bore is the internal wave analog to a saturated surfzone surface gravity bore. Along-coast variations in prebore stratification explain variations in bore properties. Near Pt. Sal, bore Doppler shifting by barotropic currents is observed.
QR Code: Link to publication