Journalpaper

Reverse tension/compression asymmetry of a Mg–Y–Zn alloys containing LPSO phases

Abstract

Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterised by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase (<10 vol%), with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority.
QR Code: Link to publication