Abstract
Complexes from catalysts and initiator can be used to insert a specific number of additional chemical functional groups in (co)polymers prepared by ring-opening polymerization (ROP) of lactones. We report on the synthesis of cooligomers from sec-butyl-morpholine-2,5-dione (SBMD) and para-dioxanone (PDX) by ROP with varied feed ratios in the bulk using the catalyst complex SnOct2/2-hydroxyethyl sulfide. Mn of the cooligomers (determined by GPC) decreased with decreasing SBMD feed ratio from 4200 ± 420 to 800 ± 80 g mol−1. When the feed ratio was reduced from 80 to 50 mol% the molar ratio of SBMD of the cooligomers (determined by 1H-NMR) remained nearly unchanged between 81 and 86 mol% and was attributed to a higher reactivity of SBMD. This assumption was confirmed by fractionation of GPC, in which an increase of SBMD with increasing molecular weight was observed. The catalyst/initiator system provides a high potential to create orthogonal building blocks by cleavage of the sulfide bond.