Estimates of current and future climate change in Belarus based on meteorological station data and the EURO-CORDEX-11 dataset


This study provides an assessment of the current and future changes (in terms of both direction and value) in air temper-ature, precipitation, snow, wind and their extremes over the territory of Belarus using information from 42 meteorologi-cal stations and 92 regional circulation model (RCM) simulations with the highest available horizontal resolution (EUR-11). Three representative concentration pathway scenarios, namely, RCP2.6, RCP4.5 and RCP8.5, are considered. Results demonstrate that in recent decades, temperature has increased over the territory of Belarus by 1.3°C, with the largest increase occurring during the cold season (2.1-2.3°C). Ensemble scenarios project further increases in air tempera-ture in the current century by +0.5-1.5°C, +2.8°C, and +5.2°C under the RCP2.6, RCP4.5 and RCP8.5 scenarios, with the largest increase during the cold season under the RCP8.5 scenario. The annual means were observed to increase (in-significantly) by 5-7% and the summer precipitation extremes exhibited a 20-25% growth in recent decades. Moreover, dry conditions have intensified in Belarus, particularly during the growing season. Further increases in precipitation of 10-15% across Belarus are projected to occur in all seasons under the RCP4.5 and RCP8.5 scenarios. Simulation models predict greater increases in single day rainfall events compared to their multiday precipitation counterparts. The greatest increases in maximal dry period length (by 1-2) are expected to occur in summer and autumn. The models project the general decrease in snowfall across Belarus to continue into the current century, with a reduction in snow precipitation days of 10-30 days. Despite the reduced wind strength (by 0.9-1.0 m·s-1) since the 1970s over the territory of Belarus, the ensemble model reveals slight nonsignificant changes in seasonal and annual wind strengths until the end of the century. Significant changes of 1-3 days under varying directions of the wind regime were observed for days with a strong breeze and storms.
QR Code: Link to publication