Abstract
Friction Surfacing (FS) coatings are deposited by severe plastic deformation at elevated temperatures (≈0.8*Tliquidus), requiring different process parameters for alloys of even small composition variations. For Al alloys it is known that with increasing Mg content the thermal softening rate decreases, i.e. the material retains higher flow strength under thermomechanical processing. Further, the stacking fault energy (SFE) decreases with increasing Mg content, which influences gliding characteristics of dislocations, and also deformation and recrystallization behavior. To elucidate the influence of such known properties on FS process parameters and resulting coatings, three Al alloys differing only in Mg content (0.27, 2 and 3.5 wt.%) were processed by FS in this study.
Pronounced shear flow localization was observed for increasing Mg content, yielding thin and narrow coatings and requiring a reduction of process speeds. Further, the decrease in SFE with increasing Mg content resulted in lower recrystallized grain size and higher grain orientation differences, due to a lower tendency for dislocation annihilation by recovery.