Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin


Submarine canyon systems are sites for coarser clastic sediment accumulations in the deep-water domains, having the most potential for hydrocarbon reservoirs. Based on the interpretation of high resolution 2D/3D seismic and drilling data, depositional characteristics of three large deep-water canyon systems on the South China Sea northern margin have been analyzed. The Central Canyon System has a deep incision geomorphology extending from east to west, featured by distinct canyon segmentations, multi-provenance sediment supplies and multi-stage canyon fillings. The Pearl River Canyon System’s formation is closely related to the development of Pearl River Delta. Its vertical stacking and migrating canyon patterns have changed over time. The depositional architectures and evolution of the recent Penghu-Gaoping Canyon System respond to tectonic movements along the Taiwan-Luzon convergent continental margin. The main controlling factors of the formation and evolution of these three canyon systems include the tectonic setting, sediment supply, sea level change and paleo-geomorphology, among which the former two are dominant. The Penghu-Gaoping Canyon System formed along the subduction structural zone, directly indicating a typical tectonic origin. Numerous seismic data show that the Central Canyon and Pearl River Canyon systems are obviously affected by tectonics, associated local topography and sediment supply.
QR Code: Link to publication