Abstract
Assessing past storm activity provides valuable knowledge for economic and ecological sectors, such as the renewable energy sector, insurances, or health and safety. However, long time series of wind speed measurements are often not available as they are usually hampered by inhomogeneities due to changes in the surroundings of a measurement site, station relocations, and changes in the instrumentation. On the contrary, air pressure measurements provide mostly homogeneous time series as the air pressure is usually unaffected by such factors.
Therefore, we perform statistical analyses on historical pressure data measured at several locations within the German Bight (southeastern North Sea) between 1897 and 2018. We calculate geostrophic wind speeds from triplets of mean sea level pressure observations that form triangles over the German Bight. We then investigate the evolution of German Bight storminess from 1897 to 2018 through analyzing upper quantiles of geostrophic wind speeds, which act as a proxy for past storm activity. The derivation of storm activity is achieved by enhancing the established triangle proxy method via combining and merging storminess time series from numerous partially overlapping triangles in an ensemble-like manner. The utilized approach allows for the construction of robust, long-term and subdaily German Bight storminess time series. Further, the method provides insights into the underlying uncertainty of the time series.
The results show that storm activity over the German Bight is subject to multidecadal variability. The latest decades are characterized by an increase in activity from the 1960s to the 1990s, followed by a decline lasting into the 2000s and below-average activity up until present. The results are backed through a comparison with reanalysis products from four datasets, which provide high-resolution wind and pressure data starting in 1979 and offshore wind speed measurements taken from the FINO-WIND project. This study also finds that German Bight storminess positively correlates with storminess in the North-East Atlantic in general. In certain years, however, notably different levels of storm activity in the two regions can be found, which likely result from shifted large-scale circulation patterns.