The influence of different rewetting procedures on the thrombogenicity of nanoporous poly(ether imide) microparticles


Nanoporous microparticles prepared from poly(ether imide) (PEI) are discussed as candidate adsorber materials for the removal of uremic toxins during apheresis. Polymers exhibiting such porosity can induce the formation of micro-gas/air pockets when exposed to fluids. Such air presenting material surfaces are reported to induce platelet activation and thrombus formation. Physical or chemical treatments prior to implantation are discussed to reduce the formation of such gas nuclei. Here, we report about the influence of different rewetting procedures – as chemical treatments with solvents – on the thrombogenicity of hydrophobic PEI microparticles and PEI microparticles hydrophilized by covalent attachment of poly(vinyl pyrrolidone) (PVP) of two different chain lengths. Autoclaved dry PEI particles of all types with a diameter range of 200 – 250 μm and a porosity of about 84% ±2% were either rewetted directly with phosphate buffered saline (24 h) or after immersion in an ethanol-series. Thrombogenicity of the particles was studied in vitro using human sodium citrated whole blood (60 min, 5 rpm vertical rotation). Numbers of non-adherent platelets were quantified, and adhesion of blood cells was qualitatively analyzed by bright field microscopy. Platelet activation (percentage of CD62P positive platelets and amounts of soluble P-Selectin) and platelet function (PFA100 closure times) were analysed. Retention of blood platelets on the particles was similar for all particle types and both rewetting procedures. Non-adherent platelets were less activated after contact with ethanol-treated particles of all types compared to those rewetted with phosphate buffered saline as assessed by a reduced number of CD62P-positive platelets and reduced amounts of secreted P-Selectin (P < 0.05 each). Interestingly, the hydrophilic surfaces significantly increased the number of activated platelets compared to hydrophobic PEI regardless of the rewetting agent. This suggests that, apart from wettability, other material properties might be more important to regulate platelet activation. PFA100 closure times were reduced and within the reference ranges in the ethanol group, however, significantly increased in the saline group. No substantial difference was detected between the tested surface modifications. In summary, rewetting with ethanol resulted in a reduced thrombogenicity of all studied microparticles regardless of their wettability, most likely resulting from the evacuation of air from the nanoporous particles.
QR Code: Link to publication