Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis


The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (Tms) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(ε-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (Mw) were 65,000 g∙mol−1, 165,000 g∙mol−1, and 168,000 g∙mol−1 for MBCsalt and 80,500 g∙mol−1, 100,000 g∙mol−1, and 147,600 g∙mol−1 for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. Tm (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers.
QR Code: Link to publication