Abstract
Mercury (Hg) contamination is ubiquitous. In order to assess its emissions, transport, atmospheric reactivity, and deposition pathways, worldwide Hg monitoring has been implemented over the past 10–20 years, albeit with only a few stations in the Southern Hemisphere. Consequently, little is known about the relative contribution of marine and terrestrial Hg sources, which is important in the context of growing interest in effectiveness evaluation of Hg mitigation policies. This paper constitutes Part 2 of the study describing a decade of atmospheric Hg concentrations at Cape Point, South Africa, i.e. the first long-term (> 10 years) observations in the Southern Hemisphere. Building on the trend analysis reported in Part 1, here we combine atmospheric Hg data with a trajectory model to investigate sources and sinks of Hg at Cape Point. We find that the continent is the major sink, and the ocean, especially its warm regions (i.e. the Agulhas Current), is the major source for Hg.
Further, we find that mercury concentrations and trends from long-range transport are independent of the source region (e.g. South America, Antarctica) and thus indistinguishable. Therefore, by filtering out air masses from source and sink regions we are able to create a dataset representing a southern hemispheric background Hg concentrations. Based on this dataset, we were able to show that the interannual variability in Hg concentrations at Cape Point is not driven by changes in atmospheric circulation but rather due to changes in global emissions (gold mining and biomass burning).