Functional requirements for polymeric implant materials in head and neck surgery


BACKGROUND: The pharyngeal reconstruction is a challenging aspect after pharyngeal tumor resection. The pharyngeal passage has to be restored to enable oral alimentation and speech rehabilitation. Several techniques like local transposition of skin, mucosa and/or muscle, regional flaps and free vascularized flaps have been developed to reconstruct pharyngeal defects following surgery, in order to restore function and aesthetics. The reconstruction of the pharynx by degradable, multifunctional polymeric materials would be a novel therapeutical option in head and neck surgery. MATERIALS AND METHODS: Samples of an ethylene-oxide sterilized polymer (diameter 10 mm, 200μm thick) were implanted for the reconstruction of a standardized defect of the gastric wall in rats in a prospective study. The stomach is a model for a “worst case” application site to test the stability of the implant material under extreme chemical, enzymatical, bacterial, and mechanical load. RESULTS: Fundamental parameters investigated in this animal model were a local tight closure between the polymer and surrounding tissues, histological findings of tissue regeneration and systemic responses to inflammation. A tight anastomosis between the polymer and the adjacent stomach wall was found in all animals after polymer implantation (n = 42). Histologically, a regeneration with glandular epithelium was found in the polymer group. No differences in the systemic responses to inflammation were found between the polymer group (n = 42) and the control group (n = 21) with primary wound closure of the defect of the gastric wall. CONCLUSIONS: A sufficient stability of the polymeric material is a requirement for the pharyngeal reconstruction with implant materials.
QR Code: Link to publication