Abstract
An oil drift model is applied to determine the spread of oil spills from different locations along ship lanes off southern Norway every month for 20 years. These results are combined with results from an egg- and larvae drift model for Atlantic cod (Gadus morhua) to determine their risk of being impacted by oil. The number of eggs and larvae exposed to oil contamination is connected to environmental conditions. The highest risk of overlap between an oil spill and cod in early life stages occurs during March and April when the eggs and larvae concentrations are highest. Spills off the west coast pose a greater risk because of the ship lanes’ proximity to the spawning grounds, but there is large interannual variability. For some spill locations the interannual variability can be explained by variability in wind and ocean currents. Simultaneously occurring onshore transports lead to a high-risk situation because both oil and larvae are concentrated towards the coast. This study demonstrates how results from oil drift and biological models can be combined to estimate the risks of oil contamination for marine organisms, based on the location and timing of the oil spill, weather/ocean conditions, and knowledge of the organisms’ life cycle.