Abstract
Biodegradable magnesium (Mg) metals have been applied in orthopaedic and stent applications due to their biodegradability, bioabsorbability and adaptability to tissue regeneration. However, further investigations are still needed to understand how angiogenesis will respond to high concentrations of Mg and oxygen content differences, which are vital to vascular remodelling and bone fracture regeneration or tissue healing. Human primary endothelial cells were exposed to various concentrations (2–8 mM) of extracellular Mg degradation products under either hypoxia or normoxia. Increased proliferation was measured with Mg extracts under hypoxia but not under normoxia. Under normoxia and with Mg extracts, HUVEC migration exhibited a bell-shaped curve. The same pattern was observed with VEGFB expression, while VEGFA was constantly downregulated. Under hypoxia, migration and VEGFA levels remained constant; however, VEGFB was upregulated. Similarly, under normoxia, tube formation as well as VEGFA and VEGFB levels were downregulated. Nevertheless, under hypoxia, tube formation remained constant while VEGFA and VEGFB levels were upregulated. These results suggest that Mg extracts did not interfere with angiogenesis under hypoxia.