Abstract
Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Centre Geesthacht, Germany, to join aluminium tube-to-tube sheet joints of coil-wound heat exchangers (CWHE) for liquefaction of natural gas (LNG). This study describes how HFDB was in a first step successfully transferred to create austenitic S32100 single hole tube-to-tube sheet joints. Process parameters are presented and results from subsequent non-destructive bubble leak testing and destructive tensile pull-out testing are discussed. After pull out testing the bonded areas were further investigated using optical microscopy as well as scanning electron microscopy.
Leak tight joints were generated due to the formation of a metallic bond close to the planar friction area of the employed tools, and failure in pull-out tests occurred by ductile fracture. The results show that the HFDB approach developed for Al-alloys may well be transferred to steel, and in the future possibly to other high-temperature alloys. It thereby offers an alternative route for joining tube to tube-sheet connections in solid state, with the corresponding advantages, such as no open flames or arc, no spatter and no need for filler material.