Population dynamics, social resilience strategies, and Adaptive Cycles in early farming societies of SW Central Europe


Inferred European Holocene population size exhibits large fluctuations, particularly around the onset of farming. We attempt to find explanations for these fluctuations by employing the concept of cycling, especially that of the Adaptive Cycle. We base our analysis on chronologically and chorologically highly resolved ceramic and site data from the Linear Pottery culture (Germ. Linearbandkermik) of the early Neolithic of southwestern Central Europe. Typological seriation with dendrochronological anchor dates provides the age model for these data. Ceramic motifs are analysed with respect to the temporally changing diversity in decoration. The temporal sequence of major decoration motifs is interpreted as an indicator of social diversity: when stylistic diversity is low, social diversity is low and vice versa. The sequence of secondary decoration motifs is interpreted in terms of individual lineage emphasis: when this diversity is low, there is strong emphasis on individual lineage and vice versa. The diversity time series are complemented by a relative population size indicator derived from the count of occupational features. Diversity and population size share a shape that is typical for (part of) an Adaptive Cycle, and they differ in their positioning on the time axis — they are time-lagged. By relating the different curves to the (metaphorical) stages of the Adaptive Cycle, we find that these cycles progress at non-identical speed in different aspects of a social system. By relating the social dynamics to well-dated and highly resolved climate fluctuation records, we find evidence that severe climate excursions shaped the location of tipping points in the social system and that these social tipping points precede inferred population decline by several generations.
QR Code: Link to publication