Abstract
The paper deals with a numerical finite element simulation of the residual stress evolution in friction stir welding of 6 mm thick aluminum alloy AA2024-T3. The transient thermal field during the welding process was calculated with the commercial code COMSOL Multiphysics 5.0. Therefore, a thermal-pseudo-mechanical (TPM) heat source was implemented. A subsequent mechanical simulation was performed with varying hardening models for different welding speeds of 60 and 300 mm/min. The influence of softening of the material, which was due to hardening precipitation dissolution associated to the heating, was also investigated. Experiments in terms of thermocouple measurements as well as Vickers hardness and X-ray measurements of the residual stresses were conducted and compared to numerically obtained results. A qualitatively as well as quantitatively good agreement was found for different applied welding speeds.