Abstract
Neutral Polyfluoroalkyl substances (PFASs) in the atmosphere were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. Four groups of PFASs, i.e., fluorotelomer alcohols (FTOHs), fluorotelomer acrylates (FTAs), fluorooctane sulfonamides (FOSAs) and fluorooctane sulfonamidoethanols (FASEs), were detected in gas samples. FTOHs was the predominant PFAS group, accounting for 95.2–99.3% of total PFASs (ΣPFASs), while the other PFASs accounted for a small fraction of ΣPFASs. The concentrations of ΣPFASs ranged from 18.0 to 109.9 pg m−3 with an average of 54.5 pg m−3. The concentrations are comparable to those reported in other marine atmosphere. Higher concentrations of ΣPFASs were observed in the continental-influenced samples than those in other samples, pointing to the substantial contribution of anthropogenic sources. Long-range transport is suggested to be a major pathway for introducing gaseous PFASs into the atmosphere over the northern SCS. In order to further understand the fate of gaseous PFASs during transport, the atmospheric decay of neutral PFASs under the influence of reaction with OH radicals and atmospheric physical processes were estimated. Concentrations of 8:2 FTOH, 6:2 FTOH and MeFBSE from selected source region to the atmosphere over the SCS after long-range transport were predicted and compared with the observed concentrations. It suggests that the reaction with OH radicals may play an important role in the atmospheric decay of PFAS during long-range transport, especially for shorted-lived species. Moreover, the influence of atmospheric physical processes on the decay of PFAS should be further considered.