Journalpaper

Competitive Protein Adsorption to Soft Polymeric Layers: Binary Mixtures and Comparison to Theory

Abstract

Nanoparticles immersed in biological fluids readily adsorb proteins. The protein corona thus generated on the surface of the particles largely determines their biological fate. Since biological fluids, e.g., blood plasma, contain a large number of proteins, competitive adsorption must be considered. We study the competitive adsorption of lysozyme, cytochrome c, papain, and RNase A onto a soft charged polymeric layer. The experimental data of binary protein mixtures are compared to a theoretical model taking into account electrostatic and hydrophobic interactions between the proteins and the network. The interactions between bound proteins are modeled within a second virial approximation. The model possesses full generality and can be applied to the adsorption of an arbitrary number of protein types. The parameters describing the adsorption of a single protein type are obtained by isothermal titration calorimetry (ITC), while the competitive adsorption of a binary mixture is studied by fluorescence spectroscopy. The competitive adsorption can be predicted from the data related to the adsorption of the single types without adjustable parameters.
QR Code: Link to publication