Burger
Journalpaper

Climatic changes between 20th century and pre-industrial times over South America in regional model simulations

Abstract

Two simulations with a regional climate model are analyzed for climatic changes between the late 20th century and a pre-industrial period over central and southern South America. The model simulations have been forced with large-scale boundary data from the global simulation performed with a coupled atmosphere-ocean general circulation model. The regional simulations have been carried out on a 0.44° × 0.44° grid (approx. 50 km × 50 km horizontal resolution). The differences in the external forcings are related to a changed greenhouse gas content of the atmosphere, being higher in the present-day simulation. For validation purposes the climate model is analyzed using a five year long simulation between 1993 and 1997 forced with re-analysis data. The climate model reproduces the main climatic features reasonably well, especially when comparing model output co-located with observational station data. However, the comparison between observed and simulated climate is hampered by the sparse meteorological station network in South America. The present-day simulation is compared with the pre-industrial simulation for atmospheric fields of near-surface temperatures, precipitation, sea level pressure and zonal wind. Higher temperatures in the present-day simulation are evident over entire South America, mostly pronounced over the southern region of the Andes Mountains and the Parana basin. During southern winter the higher temperatures prevail over the entire continent, with largest differences over the central Andes Mountains and the Amazonian basin. Precipitation differences show a more heterogeneous pattern, especially over tropical regions. This might be explained by changes in convective processes acting on small scales. During southern summer wetter conditions are evident over the Amazonian and Parana basin in the present-day simulation. Precipitation increases are evident over Patagonia together with decreases to the north along the western slope of the Andes Mountains. During southern winter also a dipole pattern along the Andes Mountains with wetter conditions over the southern parts and drier conditions over the central parts is evident. An interesting feature relates to precipitation changes with changing sign within a few 10th of kilometers along the southern parts of the Andes mountain chain. This pattern can be explained by changes in large-scale circulation related to latitudinal changes of the extratropical southern hemispheric westerlies.
QR Code: Link to publication