Journalpaper

In situ synchrotron tomographic investigation of the solidification of an AlMg4.7Si8 alloy

Abstract

The solidification sequence of an AlMg4.7Si8 alloy is imaged in situ by synchrotron microtomography. Tomograms with (1.4 μm)3/voxel have been recorded every minute while cooling the melt from 600 °C at a cooling rate of 5 K min−1 to 540 °C in the solid state. The solidification process starts with the three-dimensional evolution of the α-Al dendritic structure at 590 °C. The growth of the α-Al dendrites is described by curvature parameters that represent the coarsening quantitatively, and ends in droplet-like shapes of the secondary dendrite arms at 577 °C. There, the eutectic valley of α-Al/Mg2Si is reached, forming initially octahedral Mg2Si particles preferentially at the bases of the secondary dendrite arms. The eutectic grows with seaweed-like Mg2Si structures, with increasing connectivity. During this solidification stage Fe-aluminides form and expand as thin objects within the interdendritic liquid. Finally, the remaining liquid freezes as ternary α-Al/Mg2Si/Si eutectic at 558 °C, increasing further the connectivity of the intermetallic phases. The frozen alloy consists of four phases exhibiting morphologies characteristic of their mode of solidification: α-Al dendrites, eutectic α-Al/Mg2Si “Chinese script” with Fe-aluminides, and interpenetrating α-Al/Mg2Si/Si ternary eutectic.
QR Code: Link to publication