Journalpaper

Novel approach for the treatment of cyclic loading using a potential-based cohesive zone model

Abstract

The development of cohesive zone models in the finite element framework dates back some 30 years, and cohesive interface elements are nowadays employed as a standard tool in scientific and engineering communities. They have been successfully applied to a broad variety of different materials and loading scenarios. However, many of such constitutive models are simply based on traction-separation relations without deducing them from energy potentials. By way of contrast, a thermodynamically consistent cohesive zone model suitable for the analysis of low cycle fatigue is elaborated in the present contribution. For that purpose, a plasticity-based cohesive law including isotropic hardening/softening is supplemented by a damage model. First results of this new approach to cyclic loading will be presented illustrating the applicability to low cycle fatigue.
QR Code: Link to publication