Abstract
Analyzing one of the most extensive long-term data series in the North Sea, the Helgoland Roads time series, we investigated the changes in the factors that potentially drive phytoplankton bloom dynamics in the German Bight. We compared the changes in these factors with the changes in the spring bloom phenology. We combined zooplankton, nutrient, weather, and phytoplankton data to analyze whether there has been a shift in trophic interactions in the North Sea affecting the spring bloom timing. The potential influence of temperature, with a mean increase of 1.5°C, was investigated. We showed that the German Bight around Helgoland is a highly dynamic system and has undergone considerable change in the last 30 yr. Nutrient levels, temperature, underwater light climate and wind speed have all changed. However, the spring bloom dynamics have hardly changed at all. We showed that the spring bloom tends to come later in warmer years but that this is not directly correlated with the overall warming trend. The known regime shift of the late 1980s is clearly visible in our data in terms of average phytoplankton winter densities and average cell size, but even so the start of the spring bloom has not changed.