Methane in the southern North Sea: Sources, spatial distribution and budgets


Measurements of methane (CH4) so far have always shown supersaturation in the entire North Sea relative to the atmospheric partial pressure and the distribution of surface CH4 reveals a distinct increase towards the shore. Since North Sea sediments presumably are an insignificant source for CH4 the coastal contribution via rivers and tidal flats gains in importance. In this work, CH4 data from the River Weser, the back barrier tidal flats of Spiekeroog Island (NW Germany), and the German Bight are presented. Results from the River Weser are compared to other rivers draining into the German Bight. Measurements in the tidal flat area of Spiekeroog Island highlight this ecosystem as an additional contributor to the overall CH4 budget of the southern North Sea. A tidally driven CH4 pattern is observed for the water column with maximum values during low tide. Tidal flat sediments turn out to be the dominating source because pore waters discharged during low tide are highly enriched in CH4. In contrast, the freshwater contribution to the tidal flats by small coastal tributaries has almost no impact on water column CH4 concentrations. The CH4 level seems to be disturbed irregularly by wind forcing due to elevated degassing and prevention of advective flow when tidal flats remain covered by water. Based on our data, two model calculations were used to estimate the impact of tidal flats on the CH4 budget in the German Bight. Our results demonstrate that the back barrier tidal flats of the east Frisian Wadden Sea contribute CH4 in an order of magnitude between the Wash estuary and River Elbe and thus have to be considered in budget calculations.
QR Code: Link to publication