Abstract
Investigations on fatigue crack growth retardation due to single tensile and periodic multiple over load in strength undermatched laser beam welded 3.2 mm thick aerospace grade aluminium alloy 2139T8 sheets are conducted. The effect of overload on the fatigue crack propagation behaviours of the homogenous base metal and welded panels (200 mm wide, centre cracked) was compared using experimental and FE analysis methods. The effective crack tip plasticity has been determined in homogeneous M(T) specimens using Irwin’s method and in both homogeneous and laser welded specimen by calculating crack tip plastic strain using FE analysis for single tensile overload. The crack retardation due to the overload in welded specimens is described by the Wheeler Model. The crack tip plastic zone size in the welded specimen was determined by FE analysis using maximum plastic zone extension at the mid sheet thickness. The results show that the Wheeler Model can be implemented to the highly heterogeneous undermatched weld to describe the crack retardation in fatigue following single tensile overload. Fatigue crack growth retardation due to single overload is found to be larger than the base metal. However, after periodic multiple overload, shorter crack retardation has occurred for undermatched welds than the base metal.