Abstract
We report on the nanoscale structure and solvent-induced phase behavior of two, nearly similar -conjugated hairy-rod polymers, branched side chain poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and linear side chain poly[9,9-dioctylfluorene-2,7-diyl] (PFO or PF8), in good and bad (or poor) solvents-deuterated toluene and deuterated methylcyclohexane (MCH)-at 20 C. Small-angle neutron scattering (SANS) measurements exploiting contrast variation with side chain deuterated PFO polyfluorene have been employed and complemented by optical absorption measurements. In toluene both PF2/6 and PFO adopt an elongated (rodlike) conformation containing predominantly only a single polymer chain (diameter of the order of 1 nm), which indicates dissolution down to the molecular level. In contrast, in MCH, PF2/6 shows an elongated structure while PFO forms sheetlike structures (characteristic thickness of 2-3 nm), thus dissolving down to the "colloidal" level. The elongated structure of PFO consists of individual polymer chains adopting dominantly a conformational isomer C. The thickness of sheetlike PFO particles corresponds to that of around two polymer layers and side chain contrast variation gives an evidence for an even distribution of the backbones within the sheets. These sheets are potentially an initial stage of PFO crystallization and also contain conformational isomer C of those chains observed in the so-called beta-phase (or beta-sheets) in the solid state. The observed phenomena were not found to depend on concentration over the concentration range 5-10 mg/mL.