Publication

Science in support of coastal ocean forecasting - part 1

Abstract

In parallel to the ever increasing activities and population in the coastal regions, and to the critical growth of the associated stresses on the coastal environment, the need for monitoring and forecasting of currents and marine parameters in the coastal and shelf seas is becoming more pressing (e.g. De Mey et al. 2009; De Mey and Kourafalou 2014). Large-scale ocean modeling, observational, and forecasting projects provide products which are available everywhere, but the relevance of those products in coastal regions is often found inadequate (De Mey and Proctor 2009). Because of the smaller-scale, higher-frequency, coupled coastal dynamical, and biogeochemical processes found in coastal regions, and because of the presence of the coastline, shelves, coastal rivers, and other unique elements, specific coastal modeling, observational, and forecasting strategies have to be designed, within a general paradigm of integration between large-scale, regional, and coastal ocean forecasting systems (e.g., Stanev et al. 2016). Science has to be advanced to that end, as a community effort: this is what the Coastal Ocean and Shelf Seas Task Team (COSS-TT) aims to do within GODAE Ocean View (GOV, www.godae-oceanview.org), as illustrated in Kourafalou et al. (2015a, b). Five successful international COSS-TT meetings so far helped define priority areas where science is needed for the development of Coastal Ocean Forecasting Systems: (a) monitoring of physical and biogeochemical parameters in coastal regions (including active links with the coastal altimetry community); (b) development of fine-scale coastal ocean models; (c) integration topics: downscaling the ocean estimation problem from large-scale to coastal-scale models, data and forcings, coastal data assimilation and prediction, and consistent validation metrics; (d) coastal-scale atmosphere-wave-ocean couplings; (e) ecosystem response to the physical drivers; (f) probabilistic approaches and risk assessment in the coastal ocean, including extreme events. Papers in this collection have been gathered in themes which cut across those boundaries: (1) coastal monitoring and array design, (2) coastal modeling, integration, and model-data synergy, (3) coastal data assimilation and prediction, and (4) coastal applications. A summary of all contributions is included below.
QR Code: Link to publication