%0 journal article %@ 2059-8521 %A Balk, M., Behl, M., Lendlein, A. %D 2019 %J MRS Advances %N 21 %P 1193-1205 %R doi:10.1557/adv.2019.202 %T Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(ε-caprolactone) Dimethacrylate and n-Butyl Acrylate %U https://doi.org/10.1557/adv.2019.202 21 %X The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed.