@misc{tsimitri_drivers_of_2015, author={Tsimitri, C., Rockel, B., Wueest, A., Budnev, N.M., Sturm, M., Schmid, M.}, title={Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal}, year={2015}, howpublished = {journal article}, doi = {https://doi.org/10.1002/2014JC010449}, abstract = {Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000 to 2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) Winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River.}, note = {Online available at: \url{https://doi.org/10.1002/2014JC010449} (DOI). Tsimitri, C.; Rockel, B.; Wueest, A.; Budnev, N.; Sturm, M.; Schmid, M.: Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal. Journal of Geophysical Research : Oceans. 2015. vol. 120, no. 3, 1508-1526. DOI: 10.1002/2014JC010449}}