%0 journal article %@ 0023-432X %A Hort, N., Huang, Y.D., Abu Leil, T., Rao, K.P., Kainer, K.U. %D 2011 %J Kovove materialy / Metallic materials %N 3 %P 163-177 %R doi:10.4149/km_2011_3_163 %T Properties and processing of magnesium-tin-calcium alloys %U https://doi.org/10.4149/km_2011_3_163 3 %X The development of new creep resistant magnesium alloys has become a major issue in recent years and therefore further alloy development is necessary. Newly developed alloys are based on the binary system Mg-Sn. Sn as major alloying element was chosen due to its high solid solubility over a wide temperature range and due to the possible formation of Mg2Sn intermetallic precipitates with a high melting temperature of about 770 °C. These characteristics suggest that a fairly large volume fraction of thermally stable Mg2Sn particles can be formed during solidification. This makes it possible that the Mg-Sn alloys can be developed as creep resistant magnesium alloys and/or wrought magnesium alloys. Previous investigations indicate that the Mg-Sn alloys have a comparable or even better creep property than AE42 alloy. This paper presents an overview about recent works on the developments of Mg-Sn alloys performed in MagIC, Helmholtz-Zentrum Geesthacht Centre, which includes: microstructural characterization, creep deformation and hot deformation, and corrosion behaviour. Very positive results have been obtained and show Mg-Sn-Ca alloy systems can be developed for power train and hand tool applications.