%0 journal article %@ 0941-2948 %A Knote, C., Heinemann, G., Rockel, B. %D 2010 %J Meteorologische Zeitschrift %N 1 %P 11-23 %R doi:10.1127/0941-2948/2010/0424 %T Changes in weather extremes: Assessment of return values using high resolution climate simulations at convection-resolving scale %U https://doi.org/10.1127/0941-2948/2010/0424 1 %X Globale und regionale Klimamodelle werden derzeit mit räumlichen Auflösungen von 10 km oder mehr betrieben. State-of-the-art Wettervorhersagemodelle sind dagegen in ihrer Auflösung an der Kilometerskala angekommen, was die explizite Berechnung von Konvektion und die Berücksichtigung von topographischen Effekten z.B. in Mittelgebirgsregionen ermöglicht. Es besteht die Annahme, dass sich dadurch Extreme wie Starkwindereignisse, Gewitter oder Starkregen realistischer modellieren lassen. Das COSMO-CLM, die Klimaversion des Wettervorhersagemodells des COSMO-Konsortiums, wurde mit einer Auflösung von 1.3 km für das Gebiet von Rheinland-Pfalz betrieben. Zwei Zeitscheiben von jeweils 10 Jahren (1960-69 und 2015-25) zeigen die Veränderungen in Extremereignissen für das A1B Szenario des IPCC. Eine “Peaks over threshold” (POT) Extremwertanalyse gibt Aufschluss über Veränderungen in den Extrema des bodennahen Windes, der Temperatur und des Niederschlags. Die Stabilität der Analyse wird mit moving-block Bootstrapping getestet. Wird die Analyse auf die einzelnen Gitterpunkte angewendet, so zeigt sich, dass Bergregionen die größten Temperaturänderungen in den Extremen der Tagesminima zu erwarten haben, im Gegensatz zum Flachland, wo die Tagesmaxima der Temperatur die stärkste Veränderung zeigen. Änderungen in den Windgeschwindigkeiten bewegen sich um Null, im Mittel wie auch in den Extrema. Unsere Studie zeigt den Mehrwert, der durch erhöhte Variabilität meteorologischer Größen aufgrund besserer horizontaler Auflösung erreicht werden kann.