%0 journal article %@ 2073-4360 %A Shishatskiy, S.,Makrushin, V.,Levin, I.,Merten, P.,Matson, S.,Khotimskiy, V. %D 2022 %J Polymers %N 3 %P 462 %R doi:10.3390/polym14030462 %T Effect of Immobilization of Phenolic Antioxidant on Thermo-Oxidative Stability and Aging of Poly(1-trimethylsilyl-1-propyne) in View of Membrane Application %U https://doi.org/10.3390/polym14030462 3 %X The effect of phenolic antioxidant Irganox 1076 on the structure and gas permeation behavior of poly(1-trimethylsilyl-1-propyne) (PTMSP) was investigated. Isotropic films as well as thin film composite membranes (TFCM) from pure PTMSP and with added antioxidant (0.02 wt%) were prepared. PTMSP with antioxidant has a significantly higher thermal degradation stability in comparison to pure polymer. The thermal annealing of isotropic films of PTMSP with antioxidant was carried out at 140 °C. It revealed the stability of gas permeation properties for a minimum of up to 500 h of total heating time after a modest permeation values decrease in the first 48 h. X-ray diffraction data indicate a decrease in interchain distances during the heat treatment of isotropic films and indicate an increase in the packing density of macromolecules during thermally activated relaxation. Isotropic films and TFCMs from pure PTMSP and with antioxidant stabilizer were tested under conditions of constant O2 and N2 flow. The physical aging of thick and composite PTMSP membranes point out the necessity of thermal annealing for obtaining PTMSP-based membranes with predictable properties.