%0 journal article %@ 1991-959X %A Van Pham, T.,Steger, C.,Rockel, B.,Keuler, K.,Kirchner, I.,Mertens, M.,Rieger, D.,Zängl, G.,Früh, B. %D 2021 %J Geoscientific Model Development %N 2 %P 985-1005 %R doi:10.5194/gmd-14-985-2021 %T ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model %U https://doi.org/10.5194/gmd-14-985-2021 2 %X For the first time, the Limited-Area Mode of the new ICON (Icosahedral Nonhydrostatic) weather and climate model has been used for a continuous long-term regional climate simulation over Europe. Built upon the Limited-Area Mode of ICON (ICON-LAM), ICON-CLM (ICON in Climate Limited-area Mode, hereafter ICON-CLM, available in ICON release version 2.6.1) is an adaptation for climate applications. A first version of ICON-CLM is now available and has already been integrated into a starter package (ICON-CLM_SP_beta1). The starter package provides users with a technical infrastructure that facilitates long-term simulations as well as model evaluation and test routines. ICON-CLM and ICON-CLM_SP were successfully installed and tested on two different computing systems. Tests with different domain decompositions showed bit-identical results, and no systematic outstanding differences were found in the results with different model time steps. ICON-CLM was also able to reproduce the large-scale atmospheric information from the global driving model. Comparison was done between ICON-CLM and the COnsortium for Small-scale MOdeling (COSMO)-CLM (the recommended model configuration by the CLM-Community) performance. For that, an evaluation run of ICON-CLM with ERA-Interim boundary conditions was carried out with the setup similar to the COSMO-CLM recommended optimal setup. ICON-CLM results showed biases in the same range as those of COSMO-CLM for all evaluated surface variables. While this COSMO-CLM simulation was carried out with the latest model version which has been developed and was carefully tuned for climate simulations on the European domain, ICON-CLM was not tuned yet. Nevertheless, ICON-CLM showed a better performance for air temperature and its daily extremes, and slightly better performance for total cloud cover. For precipitation and mean sea level pressure, COSMO-CLM was closer to observations than ICON-CLM. However, as ICON-CLM is still in the early stage of development, there is still much room for improvement.