%0 journal article %@ 1996-1944 %A Le, T.-T.,Pistidda, C.,Abetz, C.,Georgopanos, P.,Garroni, S.,Capurso, G.,Milanese, C.,Puszkiel, J.,Dornheim, M.,Abetz, V.,Klassen, T. %D 2020 %J Materials %N 4 %P 991 %R doi:10.3390/ma13040991 %T Enhanced Stability of Li-RHC Embedded in an Adaptive TPX™ Polymer Scaffold %U https://doi.org/10.3390/ma13040991 4 %X In this work, the possibility of creating a polymer-based adaptive scaffold for improving the hydrogen storage properties of the system 2LiH+MgB2+7.5(3TiCl3·AlCl3) was studied. Because of its chemical stability toward the hydrogen storage material, poly(4-methyl-1-pentene) or in-short TPXTM was chosen as the candidate for the scaffolding structure. The composite system was obtained after ball milling of 2LiH+MgB2+7.5(3TiCl3·AlCl3) and a solution of TPXTM in cyclohexane. The investigations carried out over the span of ten hydrogenation/de-hydrogenation cycles indicate that the material containing TPXTM possesses a higher degree of hydrogen storage stability.