%0 journal article %@ 0148-0227 %A Tsimitri, C.,Rockel, B.,Wueest, A.,Budnev, N.M.,Sturm, M.,Schmid, M. %D 2015 %J Journal of Geophysical Research : Oceans %N 3 %P 1508-1526 %R doi:10.1002/2014JC010449 %T Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal %U https://doi.org/10.1002/2014JC010449 3 %X Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000 to 2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) Winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River.