%0 journal article %@ 0749-6419 %A Pirondi, A.,Bonara, N.,Steglich, D.,Brocks, W.,Hellmann, D. %D 2006 %J International Journal of Plasticity %N %P 2146-2170 %R doi:10.1016/j.ijplas.2006.03.007 %T Simulation of failure under cyclic plastic loading by damage models %U https://doi.org/10.1016/j.ijplas.2006.03.007 %X The purpose of this work is to simulate the evolution of ductile damage and failure involved by,plastic strain reversals using damage models based on either continuum damage mechanics (CDM),or porosity evolution. A low alloy steel for pressure vessels (20MnMoNi55) was chosen as reference,material. The work includes both experimental and simulation phases. The experimental campaign,involves different kinds of specimens and testing conditions. First, monotonic tensile tests have been,performed in order to evaluate tensile and ductile damage behaviour. Then, the cyclic yielding,behaviour has been characterized performing cyclic plasticity tests on cylindrical bars. Finally, cyclic,loading tests in the plastic regime have been made on different round notched bars (RNBs) to study,the evolution of plastic deformation and damage under multiaxial stress conditions. The predictions,of the different models were compared in terms of both, the specimens macroscopic response and,local damage. Special emphasis was laid on predictions of the number of cycles prior to final failure,and the crack initiation loci.